Welcome to the Advanced Linear Models for Data Science Class 1: Least Squares. This class is an introduction to least squares from a linear algebraic and mathematical perspective. Before beginning the class make sure that you have the following:
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
Advanced Linear Models for Data Science 1: Least Squares
This course is part of Advanced Statistics for Data Science Specialization
Instructor: Brian Caffo, PhD
29,477 already enrolled
Included with
(187 reviews)
Skills you'll gain
Details to know
Add to your LinkedIn profile
7 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 6 modules in this course
We cover some basic matrix algebra results that we will need throughout the class. This includes some basic vector derivatives. In addition, we cover some some basic uses of matrices to create summary statistics from data. This includes calculating and subtracting means from observations (centering) as well as calculating the variance.
What's included
7 videos4 readings1 assignment
In this module, we cover the basics of regression through the origin and linear regression. Regression through the origin is an interesting case, as one can build up all of multivariate regression with it.
What's included
6 videos2 readings1 assignment
In this lecture, we focus on linear regression, the most standard technique for investigating unconfounded linear relationships.
What's included
8 videos2 readings1 assignment
We now move on to general least squares where an arbitrary full rank design matrix is fit to a vector outcome.
What's included
6 videos1 reading1 assignment
Here we give some canonical examples of linear models to relate them to techniques that you may already be using.
What's included
4 videos1 assignment
Here we give a very useful kind of linear model, that is decomposing a signal into a basis expansion.
What's included
6 videos2 assignments
Instructor
Offered by
Recommended if you're interested in Probability and Statistics
Johns Hopkins University
Illinois Tech
Howard University
Johns Hopkins University
Why people choose Coursera for their career
Learner reviews
Showing 3 of 187
187 reviews
- 5 stars
63.10%
- 4 stars
25.13%
- 3 stars
7.48%
- 2 stars
3.20%
- 1 star
1.06%
New to Probability and Statistics? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.